VCO Fundamentals

John McNeill
Worcester Polytechnic Institute
mcneill@ece.wpi.edu
Overview

• Functional Block Concept
• Oscillator Review
• Basic Performance Metrics
• Methods of Tuning
• Advanced Performance Metrics
• Conclusion
Overview

• Functional Block Concept
 – Applications
 – Specifications
• Oscillator Review
• Basic Performance Metrics
• Methods of Tuning
• Advanced Performance Metrics
• Conclusion
Functional Block Concept

- Input control voltage V_{TUNE} determines frequency of output waveform
Applications: RF System

- Downconvert band of interest to IF
- VCO: Electrically tunable selection
Applications: Digital System

- Clock synthesis (frequency multiplication)

Specifications

VOLTAGE CONTROLLED OSCILLATORS 50 Ω

12.5 MHz to 3 GHz

<table>
<thead>
<tr>
<th>MODEL PREFIX</th>
<th>FREQUENCY (MHz)</th>
<th>POWER OUTPUT (dBm)</th>
<th>TUNE VOLTAGE (V)</th>
<th>PHASE NOISE (dBc/Hz) SSB@ offset frequencies: Typ.</th>
<th>PULLING (MHz pk-pk @12 dB)</th>
<th>PUSHING (MHz/V)</th>
<th>TUNING SENSITIVITY (MHz/V)</th>
<th>HARMONICS (dBc)</th>
<th>3dB MOD. BANDWIDTH (kHz)</th>
<th>POWER SUPPLY</th>
<th>VOLTAGE (V)</th>
<th>CURRENT (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JCOS-175LN</td>
<td>125-175</td>
<td>-3.7</td>
<td>1.0</td>
<td>17.0</td>
<td>95-119</td>
<td>140</td>
<td>7.5</td>
<td>4.5</td>
<td>0.2</td>
<td>3-5</td>
<td>25-20</td>
<td>12.0-25</td>
</tr>
<tr>
<td>JCOS-820DLN</td>
<td>807-832</td>
<td>+3.0</td>
<td>1.0</td>
<td>14.0</td>
<td>-88-112</td>
<td>122</td>
<td>6.0</td>
<td>0.4</td>
<td>0.4</td>
<td>6</td>
<td>24-20</td>
<td>10.0-25</td>
</tr>
<tr>
<td>JCOS-820WLN</td>
<td>780-880</td>
<td>+9.0</td>
<td>0.0</td>
<td>20.0</td>
<td>-90-112</td>
<td>132</td>
<td>8.0</td>
<td>0.3</td>
<td>0.3</td>
<td>8</td>
<td>13-18</td>
<td>9.0-25</td>
</tr>
<tr>
<td>JCOS-1100LN</td>
<td>10/9-1114</td>
<td>+8.5</td>
<td>0.0</td>
<td>20.0</td>
<td>-88-110</td>
<td>130</td>
<td>4.5</td>
<td>0.5</td>
<td>0.5</td>
<td>4</td>
<td>15-15</td>
<td>8.0-25</td>
</tr>
<tr>
<td>JTOS 25</td>
<td>12.5-25</td>
<td>+18.0</td>
<td>1.0</td>
<td>11.0</td>
<td>88-115</td>
<td>135</td>
<td>6.0</td>
<td>0.03</td>
<td>0.02</td>
<td>1</td>
<td>1.0-2.0</td>
<td>12.0-20</td>
</tr>
<tr>
<td>JTOS 50</td>
<td>25-47</td>
<td>+18.5</td>
<td>1.0</td>
<td>15.0</td>
<td>88-108</td>
<td>127</td>
<td>14.0</td>
<td>0.06</td>
<td>0.04</td>
<td>2.0</td>
<td>19-19</td>
<td>12.0-20</td>
</tr>
<tr>
<td>JTOS 75</td>
<td>37.5-75</td>
<td>+18.0</td>
<td>1.0</td>
<td>16.0</td>
<td>89-110</td>
<td>130</td>
<td>14.0</td>
<td>0.15</td>
<td>0.11</td>
<td>2.8</td>
<td>27-27</td>
<td>12.0-20</td>
</tr>
<tr>
<td>JTOS-100</td>
<td>50-100</td>
<td>+22.5</td>
<td>1.0</td>
<td>16.0</td>
<td>83-106</td>
<td>128</td>
<td>10.0</td>
<td>0.6</td>
<td>0.2</td>
<td>3.7-15.0</td>
<td>30-25</td>
<td>12.0-20</td>
</tr>
<tr>
<td>JTOS-150</td>
<td>75-150</td>
<td>+29.5</td>
<td>1.0</td>
<td>16.0</td>
<td>82-102</td>
<td>122</td>
<td>11.0</td>
<td>0.0</td>
<td>0.3</td>
<td>5.8-6.7</td>
<td>-23-13</td>
<td>12.0-20</td>
</tr>
<tr>
<td>JTOS-250</td>
<td>100-200</td>
<td>+39.0</td>
<td>1.0</td>
<td>19.0</td>
<td>81-102</td>
<td>121</td>
<td>14.0</td>
<td>1.0</td>
<td>0.2</td>
<td>6</td>
<td>25-25</td>
<td>12.0-20</td>
</tr>
<tr>
<td>JTOS 300</td>
<td>150-280</td>
<td>+19.0</td>
<td>1.0</td>
<td>16.0</td>
<td>82-102</td>
<td>122</td>
<td>14.0</td>
<td>1.0</td>
<td>0.2</td>
<td>6</td>
<td>25-25</td>
<td>12.0-20</td>
</tr>
<tr>
<td>JTOS 450</td>
<td>200-360</td>
<td>+9.0</td>
<td>1.0</td>
<td>18.0</td>
<td>82-102</td>
<td>122</td>
<td>14.0</td>
<td>1.4</td>
<td>0.4</td>
<td>10.5-17.0</td>
<td>25-20</td>
<td>12.0-20</td>
</tr>
<tr>
<td>JTOS-535</td>
<td>300-525</td>
<td>+19.5</td>
<td>1.0</td>
<td>16.0</td>
<td>-75-97</td>
<td>117</td>
<td>13.0</td>
<td>2.0</td>
<td>0.5</td>
<td>10-24</td>
<td>-28-20</td>
<td>12.0-20</td>
</tr>
<tr>
<td>JTOS-765</td>
<td>455-765</td>
<td>+29.0</td>
<td>1.0</td>
<td>16.0</td>
<td>-75-93</td>
<td>110</td>
<td>13.0</td>
<td>2.0</td>
<td>0.5</td>
<td>20-30</td>
<td>-30-20</td>
<td>12.0-20</td>
</tr>
<tr>
<td>JTOS-850NW</td>
<td>400-850</td>
<td>+5.0</td>
<td>0.5</td>
<td>18.0</td>
<td>-74-96</td>
<td>118</td>
<td>13.0</td>
<td>2.0</td>
<td>0.5</td>
<td>10-24</td>
<td>-26-20</td>
<td>12.0-20</td>
</tr>
<tr>
<td>JTOS-1000W</td>
<td>500-1000</td>
<td>+7.0</td>
<td>1.0</td>
<td>18.0</td>
<td>-73-94</td>
<td>111</td>
<td>13.0</td>
<td>5.0</td>
<td>1.0</td>
<td>30-40</td>
<td>-26-20</td>
<td>12.0-20</td>
</tr>
</tbody>
</table>
Overview

• Functional Block Concept
• Oscillator Review
 – Frequency Control
 – Amplitude Control
 – Types of Oscillators
• Basic Performance Metrics
• Methods of Tuning
• Advanced Performance Metrics
• Conclusion
Oscillator Review

• Types of Oscillators
 – Multivibrator
 – Ring
 – Resonant
 – Feedback

• Basic Factors in Oscillator Design
 – Frequency
 – Amplitude / Output Power
 – Startup
Multivibrator

- Conceptual multivibrator oscillator
 - Also called astable or relaxation oscillator
- One energy storage element
Example: Multivibrator

- Frequency: Controlled by charging current I_{REF}, C, V_{REF} thresholds
- Amplitude: Controlled by thresholds, logic swing
- Startup: Guaranteed; no stable state
Ring Oscillator

- Frequency: Controlled by gate delay
- Amplitude: Controlled by logic swing
- Startup: Guaranteed; no stable state
Resonant Oscillator

• Concept: Natural oscillation frequency of resonance
• Energy flows back and forth between two storage modes

\[f_{osc} = \frac{1}{2\pi\sqrt{LC}} \]
Resonant Oscillator (Ideal)

- Example: swing (ideal)
- Energy storage modes: potential, kinetic
- Frequency: Controlled by length of pendulum
- Amplitude: Controlled by initial position
- Startup: Needs initial condition energy input
Resonant Oscillator (Real)

- Problem: Loss of energy due to friction
- Turns “organized” energy (potential, kinetic) into “disorganized” thermal energy (frictional heating)
- Amplitude decays toward zero
- Requires energy input to maintain amplitude
- Amplitude controlled by “supervision”
LC Resonant Oscillator (Ideal)

- Energy storage modes: Magnetic field (L current), Electric field (C voltage)
- Frequency: Controlled by LC
- Amplitude: Controlled by initial condition
- Startup: Needs initial energy input (initial condition)
LC Resonant Oscillator (Real)

- Problem: Loss of energy due to nonideal L, C
 - Model as resistor R_{LOSS}; Q of resonator
- E, M field energy lost to resistor heating
- Amplitude decays toward zero
LC Resonant Oscillator (Real)

- Problem: Loss of energy due to nonideal L, C
- Requires energy input to maintain amplitude
- Synthesize “negative resistance”
- Cancel R_{LOSS} with $-R_{NEG}$
Negative Resistance

- Use active device to synthesize V-I characteristic that “looks like” \(-R_{\text{NEG}}\)
- Example: amplifier with positive feedback
- Feeds energy into resonator to counteract losses in \(R_{\text{LOSS}}\)
Feedback Oscillator: Wien Bridge

- Forward gain $A=3$
- Feedback network with transfer function $\beta(f)$
- At f_{osc}, $|\beta|=1/3$ and $\angle \beta =0$
- Thought experiment: break loop, inject sine wave, look at signal returned around feedback loop
$A\beta = 1$

- “Just right” waveform is self sustaining
$A\beta = 0.99$

- "Not enough" waveform decays to zero
$A\beta = 1.01$

- “Too much” waveform grows exponentially

![Circuit Diagram and Waveforms](Image)
Feedback oscillator

- Stable amplitude condition: $A\beta = 1$ EXACTLY
- Frequency determined by feedback network $A\beta = 1$ condition
- Need supervisory circuit to monitor amplitude
- Startup: random noise; supervisory circuit begins with $A\beta > 1$
Resonant Oscillator (Real)

- Stable amplitude condition: \(|R_{\text{NEG}}| = R_{\text{LOSS}} \) EXACTLY
- Frequency determined by LC network
- Startup: random noise; begin with \(|R_{\text{NEG}}| > R_{\text{LOSS}} \)
- Amplitude grows; soft clip gives average \(|R_{\text{NEG}}| = R_{\text{LOSS}} \)
Clapp oscillator

\[f_{osc} = \frac{1}{2\pi \sqrt{LC_{eq}}} \]
\[C_{eq} = \left(\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \right) \]

- \(L, C1-C2-C3 \) set oscillation frequency \(f_{osc} \)
Clapp oscillator

- Circuit configuration
- Equivalent circuit

MiniCircuits AN95-007, “Understanding Oscillator Concepts”
Clapp oscillator

- Frequency: Determined by L, C1, C2, C3
- Amplitude: Grows until limited by g_m soft clipping
- Startup: Choose C1, C2 feedback for $|R_{NEG}| > R_{LOSS}$

\[Z_{eq} = \frac{1}{j\omega C_1} + \frac{1}{j\omega C_2} - \frac{g_m}{\omega^2 C_1 C_2} \]
Oscillator Summary

- Typical performance of oscillator architectures:

```
BETTER PHASE NOISE

FEEDBACK
MULTIVIBRATOR
RING

FREQUENCY $f_{osc}$

kHz MHz GHz
```
Overview

• Functional Block Concept
• Oscillator Review
• Basic Performance Metrics
 – Frequency Range
 – Tuning Range
• Methods of Tuning
• Advanced Performance Metrics
• Conclusion
Basic Performance Metrics

VOLTAGE CONTROLLED OSCILLATORS 50 Ω

12.5 MHz to 3 GHz

<table>
<thead>
<tr>
<th>MODEL PREFIX</th>
<th>FREQUENCY (MHz)</th>
<th>POWER OUTPUT (dBm)</th>
<th>TUNE VOLTAGE (V)</th>
<th>PHASE NOISE (dBc/Hz) SSB @ offset frequencies:</th>
<th>PULLING (MHz) pk-pk @12 dBm</th>
<th>PUSHING (MHz/V)</th>
<th>TUNING SENSITIVITY (MHz/V)</th>
<th>HARMONICS (dBc)</th>
<th>3dB MOD. BANDWIDTH (kHz)</th>
<th>POWER SUPPLY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
<td>Typ.</td>
<td>Min.</td>
<td>Max.</td>
<td>1 kHz</td>
<td>10 kHz</td>
<td>100 kHz</td>
<td>1 MHz</td>
<td></td>
</tr>
<tr>
<td>JCOS-175LN</td>
<td>125</td>
<td>175</td>
<td>1.5</td>
<td>1.0</td>
<td>1.7</td>
<td>3.7</td>
<td>-95</td>
<td>-119</td>
<td>-132</td>
<td>-151</td>
</tr>
<tr>
<td>JCOS-820BLN</td>
<td>107</td>
<td>132</td>
<td>1.5</td>
<td>1.0</td>
<td>1.4</td>
<td>3.0</td>
<td>-88</td>
<td>-112</td>
<td>-112</td>
<td>-171</td>
</tr>
<tr>
<td>JCOS-820WLN</td>
<td>80</td>
<td>860</td>
<td>1.5</td>
<td>0.0</td>
<td>20.0</td>
<td>9.0</td>
<td>-90</td>
<td>-112</td>
<td>-132</td>
<td>-151</td>
</tr>
<tr>
<td>JCOS-1100LN</td>
<td>10/9</td>
<td>1114</td>
<td>0.0</td>
<td>20.0</td>
<td>9.5</td>
<td>8.5</td>
<td>-88</td>
<td>-110</td>
<td>-130</td>
<td>-150</td>
</tr>
</tbody>
</table>

LINEAR TUNING Wideband

JTOS 25	12.5	25	1.5	1.0	1.1	3.8	8.5	10.8	12.7	14.7	Typ.	0.03	0.03	2.0	4.0	26	13	190	12.0	20
JTOS 50	25	47	1.5	1.0	1.6	8.5	8.5	10.8	12.7	14.7	Typ.	0.06	0.04	2.0	4.0	26	13	190	12.0	25
JTOS 75	37.5	75	1.5	1.0	1.6	8.5	8.5	10.8	12.7	14.7	Typ.	0.15	0.11	2.8	4.0	27	20	126	12.0	20
JTOS-100	50	100	1.5	1.0	1.6	8.5	8.5	10.8	12.7	14.7	Typ.	0.6	0.2	3.7-1.8	25	20	100	12.0	13	
JTOS-150	75	150	1.5	1.0	1.6	2.5	7.9	10.8	12.7	14.7	Typ.	0.8	0.3	5.8-6.7	23	1/	112	12.0	20	
JTOS-200	100	200	1.5	1.0	1.6	9.3	9.3	10.8	12.7	14.7	Typ.	1.0	0.2	4.0	4.0	23	25	110	12.0	20
JTOS-300	150	280	1.5	1.0	1.6	2.5	7.9	10.8	12.7	14.7	Typ.	1.0	0.2	4.0	4.0	23	25	110	12.0	20
JTOS-400	200	380	1.5	1.0	1.6	2.5	7.9	10.8	12.7	14.7	Typ.	1.4	0.4	10.5	17.1	25	20	150	12.0	20
JTOS-535	300	525	1.5	1.0	1.6	2.5	7.9	10.8	12.7	14.7	Typ.	2.0	0.5	10-24	-28	-20	115	12.0	20	
JTOS-765	400	765	1.5	1.0	1.6	2.5	7.9	10.8	12.7	14.7	Typ.	2.0	0.5	20-30	-28	-20	115	12.0	20	
JTOS-840LNW	500	840	1.5	1.0	1.6	2.5	7.9	10.8	12.7	14.7	Typ.	4.0	1.5	18-60	-28	-20	115	12.0	20	
JTOS-1000W	500	1000	1.5	1.0	1.6	2.5	7.9	10.8	12.7	14.7	Typ.	5.0	1.0	30-40	-28	-20	115	12.0	20	
Basic Performance Metrics

Surface Mount
Voltage Controlled Oscillator

JTOS-1000W+

Wide Band 500 to 1000 MHz

Features
- wide frequency range, 500 to 1000 MHz typ.
- 3 dB modulation bandwidth 100 kHz typ.
- octave, linear tuning
- low phase noise, -134 dBc/Hz at 1 MHz offset, typ.
- excellent harmonic suppression, -26 dBc typ.
- aqueous washable

Applications
- test instruments-signal generators
- wideband frequency synthesizers
- agile communications systems
- catv distribution and set-top converters
- cellular up and down converters
- digital cordless phones

Electrical Specifications

<table>
<thead>
<tr>
<th>FREQUENCY (MHz)</th>
<th>POWER OUTPUT (dBm)</th>
<th>TUNING VOLTAGE (V)</th>
<th>PHASE NOISE (dBc/Hz) SSB at offset frequencies: Typ.</th>
<th>PULLING pk-pk @ 12 dB (MHz)</th>
<th>PUSHING (MHz/V)</th>
<th>TUNING SENSITIVITY (MHz/V)</th>
<th>HARMONICS (dBc)</th>
<th>3 dB MODULATION BANDWIDTH (MHz)</th>
<th>DC OPERATING POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>1000</td>
<td>47.0</td>
<td>1.0</td>
<td>18</td>
<td>-73</td>
<td>-94</td>
<td>-114</td>
<td>-134</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Basic Performance Metrics

- Supply: DC operating power
- Output
 - Sine: output power dBm into 50Ω
 - Square: compatible logic
- Frequency Range
- Tuning Voltage Range
Frequency Range

- Output frequency over tuning voltage range
- Caution: Temperature sensitivity
Overview

• Functional Block Concept
• Oscillator Review
• Basic Performance Metrics
• **Methods of Tuning**
• Advanced Performance Metrics
• Conclusion
VCOs / Methods of Tuning

- Require electrical control of some parameter determining frequency:
 - Multivibrator
 - Charge / discharge current
 - Ring Oscillator
 - Gate delay
 - Resonant
 - Voltage control of capacitance in LC (varactor)
Example: Tuning Multivibrator

- Frequency: Controlled by I_{REF}, C, V_{REF} thresholds
- Use linear transconductance G_M to develop I_{REF} from V_{TUNE}

 + Very linear $V_{TUNE} - f_{OSC}$ characteristic
 - But: poor phase noise; f_{OSC} limited to MHz range

\[f_{OSC} = \frac{I_{REF}}{4CV_{REF}} \]

\[I_{REF} = G_M V_{TUNE} \]

\[f_{OSC} = \left(\frac{G_M}{4CV_{REF}} \right) V_{TUNE} \]
Tuning LC Resonator: Varactor

- Q-V characteristic of pn junction
- Use reverse bias diode for C in resonator

\[Q = \frac{dQ}{dV_R} \]

\[C_j = \frac{C_j^0}{\left(1 + \frac{V_R}{V_{bi}}\right)^m} \]
Example: Clapp oscillator

\[f_{osc} = \frac{1}{2\pi\sqrt{LC_{TUNE}}} \sqrt{1 + \frac{C_{TUNE}}{C_1} + \frac{C_{TUNE}}{C_2}} \]
Overview

- Functional Block Concept
- Oscillator Review
- Basic Performance Metrics
- Methods of Tuning
- Advanced Performance Metrics
 - Tuning Sensitivity
 - Phase Noise
 - Supply Pushing
 - Load Pulling
- Conclusion
Advanced Performance Metrics

Voltage Controlled Oscillators

12.5 MHz to 3 GHz

Linear Tuning vs. Wideband

<table>
<thead>
<tr>
<th>Model Prefix</th>
<th>Frequency (MHz)</th>
<th>Power Output (dBm)</th>
<th>Tune Voltage (V)</th>
<th>Phase Noise (dBc/Hz) SSB@ offset frequencies:</th>
<th>Pulling (MHz/V)</th>
<th>Pushing (MHz/V)</th>
<th>Tuning Sensitivity (MHz/V)</th>
<th>Harmonics (dBc)</th>
<th>3dB Mod. Bandwidth (kHz)</th>
<th>Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>JCGS-175N</td>
<td>125-175</td>
<td>+3.7</td>
<td>1.0</td>
<td>-96 - 112 - 138 - 150</td>
<td>0.05</td>
<td>0.05</td>
<td>2.5</td>
<td>-25 - 20</td>
<td>2900</td>
<td>12.0 (20)</td>
</tr>
<tr>
<td>JCGS-820BLN</td>
<td>807-832</td>
<td>+3.0</td>
<td>0.0</td>
<td>-90 - 112 - 139 - 150</td>
<td>0.4</td>
<td>0.4</td>
<td>6.0</td>
<td>24 - 20</td>
<td>2000</td>
<td>10.0 (25)</td>
</tr>
<tr>
<td>JCGS-820WMN</td>
<td>780-860</td>
<td>+3.0</td>
<td>0.0</td>
<td>-86 - 110 - 130 - 150</td>
<td>4.5</td>
<td>0.3</td>
<td>8.0</td>
<td>13 - 20</td>
<td>2000</td>
<td>8.0 (25)</td>
</tr>
<tr>
<td>JCGS-1100LN</td>
<td>10/9-114</td>
<td>+3.5</td>
<td>0.0</td>
<td>-76 - 110 - 130 - 150</td>
<td>10/9-114</td>
<td>0.5</td>
<td>4.5</td>
<td>15 - 20</td>
<td>2000</td>
<td>8.0 (25)</td>
</tr>
<tr>
<td>JTO5-25</td>
<td>127-25</td>
<td>16.0</td>
<td>1.0</td>
<td>-96 - 112 - 138 - 150</td>
<td>0.05</td>
<td>0.05</td>
<td>2.5</td>
<td>-25 - 20</td>
<td>2900</td>
<td>12.0 (20)</td>
</tr>
<tr>
<td>JTO5-50</td>
<td>25-47</td>
<td>16.0</td>
<td>1.0</td>
<td>-90 - 112 - 139 - 150</td>
<td>0.4</td>
<td>0.4</td>
<td>6.0</td>
<td>24 - 20</td>
<td>2000</td>
<td>10.0 (25)</td>
</tr>
<tr>
<td>JTO5-75</td>
<td>37.5-75</td>
<td>16.0</td>
<td>1.0</td>
<td>-86 - 110 - 130 - 150</td>
<td>4.5</td>
<td>0.3</td>
<td>8.0</td>
<td>13 - 20</td>
<td>2000</td>
<td>8.0 (25)</td>
</tr>
<tr>
<td>JTO5-100</td>
<td>50-100</td>
<td>16.0</td>
<td>1.0</td>
<td>-76 - 110 - 130 - 150</td>
<td>10/9-114</td>
<td>0.5</td>
<td>4.5</td>
<td>15 - 20</td>
<td>2000</td>
<td>8.0 (25)</td>
</tr>
<tr>
<td>JTO5-150</td>
<td>75-150</td>
<td>16.0</td>
<td>1.0</td>
<td>-96 - 112 - 138 - 150</td>
<td>0.05</td>
<td>0.05</td>
<td>2.5</td>
<td>-25 - 20</td>
<td>2900</td>
<td>12.0 (20)</td>
</tr>
<tr>
<td>JTO5-200</td>
<td>100-200</td>
<td>16.0</td>
<td>1.0</td>
<td>-90 - 112 - 139 - 150</td>
<td>0.4</td>
<td>0.4</td>
<td>6.0</td>
<td>24 - 20</td>
<td>2000</td>
<td>10.0 (25)</td>
</tr>
<tr>
<td>JTO5-300</td>
<td>150-300</td>
<td>16.0</td>
<td>1.0</td>
<td>-86 - 110 - 130 - 150</td>
<td>4.5</td>
<td>0.3</td>
<td>8.0</td>
<td>13 - 20</td>
<td>2000</td>
<td>8.0 (25)</td>
</tr>
<tr>
<td>JTO5-400</td>
<td>200-400</td>
<td>16.0</td>
<td>1.0</td>
<td>-76 - 110 - 130 - 150</td>
<td>10/9-114</td>
<td>0.5</td>
<td>4.5</td>
<td>15 - 20</td>
<td>2000</td>
<td>8.0 (25)</td>
</tr>
<tr>
<td>JTO5-505</td>
<td>300-505</td>
<td>16.0</td>
<td>1.0</td>
<td>-86 - 110 - 130 - 150</td>
<td>10/9-114</td>
<td>0.5</td>
<td>4.5</td>
<td>15 - 20</td>
<td>2000</td>
<td>8.0 (25)</td>
</tr>
<tr>
<td>JTO5-850W</td>
<td>405-850</td>
<td>16.0</td>
<td>1.0</td>
<td>-76 - 110 - 130 - 150</td>
<td>0.05</td>
<td>0.05</td>
<td>2.5</td>
<td>-25 - 20</td>
<td>2900</td>
<td>12.0 (20)</td>
</tr>
<tr>
<td>JTO5-1000W</td>
<td>500-1000</td>
<td>16.0</td>
<td>1.0</td>
<td>-76 - 110 - 130 - 150</td>
<td>0.05</td>
<td>0.05</td>
<td>2.5</td>
<td>-25 - 20</td>
<td>2900</td>
<td>12.0 (20)</td>
</tr>
</tbody>
</table>
Tuning Sensitivity

Surface Mount
Voltage Controlled Oscillator

JTOS-1000W+

Wide Band 500 to 1000 MHz

Features
- Wide frequency range, 500 to 1000 MHz typ.
- 3 dB modulation bandwidth 100 kHz typ.
- Octave, linear tuning
- Low phase noise, -134 dBc/Hz at 1 MHz offset, typ.
- Excellent harmonic suppression, -26 dBc typ.
- Aqueous washable

Applications
- Test instruments-signal generators
- Wideband frequency synthesizers
- Agile communications systems
- CATV distribution and set-top converters
- Cellular up and down converters
- Digital cordless phones

Electrical Specifications

<table>
<thead>
<tr>
<th>FREQUENCY (MHz)</th>
<th>POWER OUTPUT (dBm)</th>
<th>TUNING VOLTAGE (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>1000</td>
<td>+7.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PHASE NOISE (dBc/Hz) SSB at offset frequencies: Typ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kHz</td>
</tr>
<tr>
<td>-73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PULLING pk-pk @ 12 dBc (MHz)</th>
<th>PUSHER (MHz/MV)</th>
<th>TUNING SENSITIVITY (MHz/V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ.</td>
<td>Typ.</td>
<td>Typ.</td>
</tr>
<tr>
<td>5.0</td>
<td>1.0</td>
<td>30-40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HARMONICS (dBc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ.</td>
</tr>
<tr>
<td>-26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 dB MODULATION BANDWIDTH (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ.</td>
</tr>
<tr>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DC OPERATING POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vcc (Volts)</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

CASE STYLE: BK377
PRICE: $21.95 ea. QTY (5-49)

RoHS Compliant
The + Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications.
Frequency Range

- Change in slope [MHz/V] over tuning voltage range
Why do you care?

- PLL: Tuning sensitivity K_O affects control parameters
- Loop bandwidth ω_L (may not be critical)
- Stability (critical!)

\[
K_d (\theta_i - \theta_o) \quad \frac{1 + s \tau_Z}{s \tau_I} \quad \frac{K_O}{s}
\]

$\omega_L \approx \frac{K_d K_O \tau_Z}{\tau_I}$

Fig. 3.5. Phaselock loop as a control system.
Varactor Tuning

\[
C_j = \frac{C_{j0}}{(1 + \frac{V_{TUNE}}{V_{bi}})^m}
\]

\[
f_{osc} = \frac{1}{2\pi\sqrt{LC}}
\]

\[
f_{osc} \approx \frac{1}{2\pi\sqrt{LC_j0}} \left(\frac{V_{TUNE}}{V_{bi}}\right)^{m/2}
\]

\[m = 1/2\]

- Disadvantages of abrupt junction C-V characteristic (m=1/2)
 - Smaller tuning range
 - Inherently nonlinear \(V_{TUNE} - f_{osc} \) characteristic
Hyperabrupt Junction Varactor

\[C_j = \frac{C_{j0}}{\left(1 + \frac{V_{\text{TUNE}}}{V_{\text{bi}}}
ight)^m} \]

\[f_{\text{osc}} = \frac{1}{2\pi\sqrt{L/C}} \]

\[f_{\text{osc}} \approx \frac{1}{2\pi\sqrt{L/C_{j0}}} \left(\frac{V_{\text{TUNE}}}{V_{\text{bi}}}
ight)^{m/2} \quad m = 1/2 \]

\[m \to 2 \]

- Hyperabrupt junction C-V characteristic (m ≈ 2)
 + Larger tuning range; more linear \(V_{\text{TUNE}} - f_{\text{osc}} \)
 - Disadvantage: Lower Q in resonator
Phase Noise

Surface Mount
Voltage Controlled Oscillator JTOS-1000W+

Wide Band 500 to 1000 MHz

Features
- wide frequency range, 500 to 1000 MHz typ.
- 3 dB modulation bandwidth 100 kHz typ.
- octave, linear tuning
- low phase noise, -134 dBc/Hz at 1 MHz offset, typ.
- excellent harmonic suppression, -26 dBc typ.
- aqueous washable

Applications
- test instruments-signal generators
- wideband frequency synthesizers
- agile communications systems
- catv distribution and set-top converters
- cellular up and down converters
- digital cordless phones

Electrical Specifications

<table>
<thead>
<tr>
<th>FREQUENCY (MHz)</th>
<th>POWER OUTPUT (dBm)</th>
<th>TUNING VOLTAGE (V)</th>
<th>PHASE NOISE (dBc/Hz)</th>
<th>HARMONICS (dBc)</th>
<th>3 dB MODULATION BANDWIDTH (MHz)</th>
<th>DC OPERATING POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>-10.0</td>
<td>-7.0</td>
<td>-5.0</td>
<td>-73</td>
<td>-94</td>
<td>-114</td>
</tr>
</tbody>
</table>
Phase Noise

- Power spectrum “close in” to carrier
Phase Noise: RF System

- Mixers convolve LO spectrum with RF
- Phase noise “blurs” IF spectrum
Phase Noise: Digital System

- Time domain jitter on synthesized output clock
- Decreases timing margin for system using clock
Shape of Phase Noise Spectrum

- LC filters noise into narrow band near fundamental
- High Q resonator preferred to minimize noise
Phase Noise: Intuitive view

- Phase Noise: Sine wave + white noise
- Filter: limit
- Result: 59
Phase Noise: Intuitive view

ADD WIDEBAND NOISE

NARROWBAND FILTER

HARD LIMITER

TIME DOMAIN

FREQUENCY DOMAIN

PHASE NOISE

AMPLITUDE NOISE

f

f

Mini-Circuits®
Phase Noise Description

- Symmetric; look at single sided representation
- Normalized to carrier: dBC
- At different offset frequencies from carrier
- White frequency noise: phase noise with -20dB/decade slope
- Other noise processes change slope; 1/f noise gives -30dB/decade
Phase Noise Specification

Surface Mount Voltage Controlled Oscillator

<table>
<thead>
<tr>
<th>Offset Frequency (kHz)</th>
<th>PHASE NOISE (dBC/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-73</td>
</tr>
<tr>
<td>10</td>
<td>-94</td>
</tr>
<tr>
<td>100</td>
<td>-114</td>
</tr>
<tr>
<td>1 MHz</td>
<td>-134</td>
</tr>
</tbody>
</table>

$S_\phi(f) \sim \frac{1}{f^2}$
Sources of Phase Noise

White noise in V_{TUNE} signal path

Thermal noise: Losses in resonator, series R of varactor

Noise of active devices
Supply / Load Sensitivity

- Ideally tuning voltage is the only way to change output frequency
 - In reality other factors involved
 - Mechanism depends on specifics of circuit
- Power supply dependence: Supply Pushing
- Impedance mismatch at output: Load Pulling
Supply Pushing

- Change in f_{osc} due to change in supply voltage
- Clapp oscillator: supply affects transistor bias condition, internal signal amplitudes
Load Pulling

- Change in f_{osc} due to impedance mismatch at output
- Clapp oscillator; reflection couples through transistor parasitic to LC resonator
Overview

• Functional Block Concept
• Oscillator Review
• Basic Performance Metrics
• Methods of Tuning
• Advanced Performance Metrics
• Conclusion
Summary: VCO Fundamentals

• First order behavior
 – Tuning voltage V_{TUNE} controls output frequency
 – Specify by min/max range of f_{OSC}, V_{TUNE}

• Performance limitations
 – Linearity of tuning characteristic
 – Spectral purity: phase noise, harmonics
 – Supply, load dependence

• Different VCO architectures trade frequency range, tuning linearity, phase noise performance
Questions?

Thank you to our presenter John McNeill and our sponsor Mini-Circuits