BALANCED MIXERS
BMC-28 - 26.5-40GHz
BMC-19 - 40-60GHz
BMC-15 - 50-75GHz
BMC-12 - 60-90GHz
BMC-10 - 75-110GHz
BMC-08 - 90-140GHz
BMC-06 - 110-170GHz
BMC-05 - 140-220GHz
Description

Farran Technology offers a wide variety of balanced mixers. These are based on planar technology and GaAs Schottky barrier beam lead diodes. They feature low conversion loss, low noise figure, excellent noise suppression and LO-RF isolation. The LO drive requirement can be reduced by operating the mixers with bias. They are extremely rugged devices for small physical size and mass. Designs are chosen from a portfolio of mixer architectures depending on the customer’s detailed requirements. IF frequency coverage to at least 18GHz is available and full RF/LO bandwidths may be provided in certain frequency bands.

Features

- Planar GaAs diodes
- Rugged compact design
- High reliability
- Low noise figure conversion loss
- Broad bandwidth
- Biased designs available

Applications

- Communications
- Radiometry
- Radar
- Laboratory Test Systems

<table>
<thead>
<tr>
<th>Specification</th>
<th>Unit</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Frequency Range</td>
<td>GHz</td>
<td>140</td>
<td></td>
<td>220</td>
</tr>
<tr>
<td>Conversion Loss</td>
<td>dB</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Noise Figure DSB</td>
<td>dB</td>
<td></td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. The Conversion loss values are for IF bandwidth DC to 4 GHz. The BMC spec are for fixed LO frequency and a 4GHz IF bandwidth.
2. Mixers are operational over the specified full band (performance will vary over full band). Please consult factory with exact LO, RF and IF range for expected mixer performance.
3. RF/LO/IF VSWR typically <2.5:1.
4. BMC-XXB model uses bias to allow LO drive levels 0 to +3dBm.
5. LO level +13dBm as standard
6. Consult factory with LO, RF and IF range for performance specifications
7. IF bandwidths up to 40GHz are available with fixed LO, for certain models consult factory
8. Models covering frequencies beyond 220GHz are available, consult factory
9. FTL recommends the use of a precision PSU (FDB-F4) for best practice protection of Schottky diodes in all mixers.
Note:

The data contained in this document describes new products in the pre-production phase of development, and is for information only. Farran Technology reserves the right to change, without notice, the characteristic data and other specifications applied to this product. The product may be subject to Irish export restrictions.
Description

Farran Technology offers a wide variety of balanced mixers. These are based on planar technology and GaAs Schottky barrier beam lead diodes. They feature low conversion loss, low noise figure, excellent noise suppression and LO-RF isolation. The LO drive requirement can be reduced by operating the mixers with bias. They are extremely rugged devises for small physical size and mass. Designs are chosen from a portfolio of mixer architectures depending on the customer’s detailed requirments. IF frequency coverage to at least 18GHz is available and full RF/LO bandwidths may be provided in certain frequency bands.

Features

- Planar GaAs diodes
- Rugged compact design
- High reliability
- Low noise figure conversion loss
- Broad bandwidth
- Biased designs available

Applications

- Communications
- Radiometry
- Radar
- Laboratory Test Systems

Specification

<table>
<thead>
<tr>
<th>Specification</th>
<th>Unit</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Frequency Range</td>
<td>GHz</td>
<td>110</td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>Conversion Loss</td>
<td>dB</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Noise Figure DSB</td>
<td>dB</td>
<td></td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. The Conversion loss values are for IF bandwidth DC to 4 GHz. The BMC spec are fixed for LO frequency and a 4GHz IF bandwidth.
2. Mixers are operational over the specified full band (performance will vary over full band). Please consult factory with exact LO, RF and IF range for expected mixer performance.
3. RF/LO/IF VSWR typically <2.5:1.
4. BMC-XXB model uses bias to allow LO drive levels 0 to +3dBm.
5. LO level +13dBm as standard
6. Consult factory with LO, RF and IF range for performance specifications
7. IF bandwidths up to 40GHz are available with fixed LO, for certain models consult factory
8. Models covering frequencies beyond 220GHz are available, consult factory
9. FTL recommends the use of a precision PSU (FDB-F4) for best practice protection of Schottky diodes in all mixers.
Note:

The data contained in this document describes new products in the pre-production phase of development, and is for information only. Farran Technology reserves the right to change, without notice, the characteristic data and other specifications applied to this product. The product may be subject to Irish export restrictions.
Description

Farran Technology offers a wide variety of balanced mixers. These are based on planar technology and GaAs Schottky barrier beam lead diodes. They feature low conversion loss, low noise figure, excellent noise suppression and LO-RF isolation. The LO drive requirement can be reduced by operating the mixers with bias. They are extremely rugged devices for small physical size and mass. Designs are chosen from a portfolio of mixer architectures depending on the customer’s detailed requirements. IF frequency coverage to at least 18GHz is available and full RF/LO bandwidths may be provided in certain frequency bands.

Features

• Planar GaAs diodes
• Rugged compact design
• High reliability
• Low noise figure conversion loss
• Broad bandwidth
• Biased designs available

Applications

• Communications
• Radiometry
• Radar
• Laboratory Test Systems

Specification

<table>
<thead>
<tr>
<th>Specification</th>
<th>Unit</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Frequency Range</td>
<td>GHz</td>
<td>90</td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>Conversion Loss</td>
<td>dB</td>
<td></td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>Noise Figure DSB</td>
<td>dB</td>
<td></td>
<td></td>
<td>8.5</td>
</tr>
</tbody>
</table>

Notes:
1. The Conversion loss values are for IF bandwidth DC to 4 GHz. The BMC spec are fixed for LO frequency and a 4GHz IF bandwidth.
2. Mixers are operational over the specified full band (performance will vary over full band). Please consult factory with exact LO, RF and IF range for expected mixer performance.
3. RF/LO/IF VSWR typically <2.5:1.
4. BMC-XXB model uses bias to allow LO drive levels 0 to +3dBm.
5. LO level +13dBm as standard
6. Consult factory with LO, RF and IF range for performance specifications
7. IF bandwidths up to 40GHz are available with fixed LO, for certain models consult factory
8. Models covering frequencies beyond 220GHz are available, consult factory
9. FTL recommends the use of a precision PSU (FDB-F4) for best practice protection of Schottky diodes in all mixers.
Note:

The data contained in this document describes new products in the pre-production phase of development, and is for information only. Farran Technology reserves the right to change, without notice, the characteristic data and other specifications applied to this product. The product may be subject to Irish export restrictions.
Datasheet

Balanced Mixers
75 - 110 GHz – BMC-10 & BMC-10B

Description

Farran Technology offers a wide variety of balanced mixers. These are based on planar technology and GaAs Schottky barrier beam lead diodes. They feature low conversion loss, low noise figure, excellent noise suppression and LO-RF isolation. The LO drive requirement can be reduced by operating the mixers with bias. They are extremely rugged devises for small physical size and mass. Designs are chosen from a portfolio of mixer architectures depending on the customer’s detailed requirements. IF frequency coverage to at least 18GHz is available and full RF/LO bandwidths may be provided in certain frequency bands.

Features

- Planar GaAs diodes
- Rugged compact design
- High reliability
- Low noise figure & conversion loss
- Broad bandwidth
- Biased designs available

Applications

- Communications
- Radiometry
- Radar
- Laboratory Test Systems

Unit 1 Airport East Business
Park, Farmers Cross, Cork.
Telephone: +353 21 4849170
Fax: +353 21 4849192

Page 1 of 4
<table>
<thead>
<tr>
<th>Specification BMC-10 (Unbiased)</th>
<th>Unit</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Frequency Range</td>
<td>GHz</td>
<td>75</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Conversion Loss (Full-band Fixed LO)</td>
<td>dB</td>
<td>7.5</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Conversion Loss (Full-band Swept LO)</td>
<td>dB</td>
<td>8.5</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>LO power</td>
<td>dBm</td>
<td>+10</td>
<td>+13</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specification BMC-10B (Biased)</th>
<th>Unit</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Frequency Range</td>
<td>GHz</td>
<td>75</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Conversion Loss (Full-band Fixed LO)</td>
<td>dB</td>
<td>8.5</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Conversion Loss (Full-band Swept LO)</td>
<td>dB</td>
<td>9</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>LO power</td>
<td>dBm</td>
<td>+0</td>
<td>+3</td>
<td></td>
</tr>
</tbody>
</table>
Typical Plots:

Conversion Loss v RF Frequency LO = 95GHz

![Conversion Loss v RF Frequency LO = 95GHz](image)

Figure 1 Conversion Loss Full Band (75 – 110 GHz) LO = 95 GHz BMC-10 (Unbiased)

BMC 10B Conversion Loss

![BMC 10B Conversion Loss](image)

Figure 2 Conversion Loss Full Band (75 – 110 GHz) LO = 92.5 GHz BMC-10B (Biased)
Note:

The data contained in this document is valid at time of publishing. Farran Technology reserves the right to change, without notice, the characteristic data and other specifications applied to this product. The product may be subject to Irish export restrictions.
Description

Farran Technology offers a wide variety of balanced mixers. These are based on planar technology and GaAs Schottky barrier beam lead diodes. They feature low conversion loss, low noise figure, excellent noise suppression and LO-RF isolation. The LO drive requirement can be reduced by operating the mixers with bias. They are extremely rugged devices for small physical size and mass. Designs are chosen from a portfolio of mixer architectures depending on the customer’s detailed requirements. IF frequency coverage to at least 18GHz is available and full RF/LO bandwidths may be provided in certain frequency bands.

Features
- Planar GaAs diodes
- Rugged compact design
- High reliability
- Low noise figure conversion loss
- Broad bandwidth
- Biased designs available

Applications
- Communications
- Radiometry
- Radar
- Laboratory Test Systems

Specification

<table>
<thead>
<tr>
<th>Specification</th>
<th>Unit</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Frequency Range</td>
<td>GHz</td>
<td>60</td>
<td>7.5</td>
<td>90</td>
</tr>
<tr>
<td>Conversion Loss</td>
<td>dB</td>
<td></td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>Noise Figure DSB</td>
<td>dB</td>
<td></td>
<td>8.5</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. The Conversion loss values are for IF bandwidth DC to 4 GHz. The BMC spec are fixed for LO frequency and a 4GHz IF bandwidth.
2. Mixers are operational over the specified full band (performance will vary over full band). Please consult factory with exact LO, RF and IF range for expected mixer performance.
3. RF/LO/IF VSWR typically <2.5:1.
4. BMC-XXB model uses bias to allow LO drive levels 0 to +3dBm.
5. LO level +13dBm as standard
6. Consult factory with LO, RF and IF range for performance specifications
7. IF bandwidths up to 40GHz are available with fixed LO, for certain models consult factory
8. Models covering frequencies beyond 220GHz are available, consult factory
9. FTL recommends the use of a precision PSU (FDB-F4) for best practice protection of Schottky diodes in all mixers.
Note:

The data contained in this document describes new products in the pre-production phase of development, and is for information only. Farran Technology reserves the right to change, without notice, the characteristic data and other specifications applied to this product. The product may be subject to Irish export restrictions.
Farran Technology offers a wide variety of balanced mixers. These are based on planar technology and GaAs Schottky barrier beam lead diodes. They feature low conversion loss, low noise figure, excellent noise suppression and LO-RF isolation. The LO drive requirement can be reduced by operating the mixers with bias. They are extremely rugged devices for small physical size and mass. Designs are chosen from a portfolio of mixer architectures depending on the customer's detailed requirements. IF frequency coverage to at least 18GHz is available and full RF/LO bandwidths may be provided in certain frequency bands.

Features
- Planar GaAs diodes
- Rugged compact design
- High reliability
- Low noise figure & conversion loss
- Broad bandwidth
- Biased designs available

Applications
- Communications
- Radiometry
- Radar
- Laboratory Test Systems
Specification BMC-15-000X

<table>
<thead>
<tr>
<th></th>
<th>Unbiased Mixer</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Frequency Range</td>
<td>GHz</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>Conversion Loss</td>
<td>dB</td>
<td>50</td>
<td>7.5</td>
<td>12</td>
</tr>
<tr>
<td>(Full RF Band, Fixed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO @ centre Freq)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conversion Loss</td>
<td>dB</td>
<td></td>
<td>8.5</td>
<td>13</td>
</tr>
<tr>
<td>(Full RF Band, Swept</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO, IF<4GHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO Power</td>
<td>dBm</td>
<td></td>
<td>+10</td>
<td>+13</td>
</tr>
</tbody>
</table>

Specification BMC-15B-000X

<table>
<thead>
<tr>
<th></th>
<th>Biased Mixer</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Frequency Range</td>
<td>GHz</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>Conversion Loss</td>
<td>dB</td>
<td>50</td>
<td>8.5</td>
<td>13</td>
</tr>
<tr>
<td>(Full RF Band, Fixed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO @ centre Freq)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conversion Loss</td>
<td>dB</td>
<td></td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>(Full RF Band, Swept</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO, IF<4GHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO Power</td>
<td>dBm</td>
<td></td>
<td>0</td>
<td>+3</td>
</tr>
</tbody>
</table>
Typical Plots:

BMC 15 Conversion Loss Characteristic Date 29-04-09

Figure 1 Conversion Loss (58 – 62 GHz) LO = 60 GHz BMC-15 (Unbiased)

Figure 2 Conversion Loss Full Band (50 – 75 GHz) LO swept BMC-15B (Biased)
Figure 3 Conversion Loss Full Band (50 – 75 GHz) LO = 60 GHz BMC-15B (Biased)

Note:

The data contained in this document is valid at time of publishing. Farran Technology reserves the right to change, without notice, the characteristic data and other specifications applied to this product. The product may be subject to Irish export restrictions.
Description

Farran Technology offers a wide variety of balanced mixers. These are based on planar technology and GaAs Schottky barrier beam lead diodes. They feature low conversion loss, low noise figure, excellent noise suppression and LO-RF isolation. The LO drive requirement can be reduced by operating the mixers with bias. They are extremely rugged devises for small physical size and mass. Designs are chosen from a portfolio of mixer architectures depending on the customer’s detailed requirments. IF frequency coverage to at least 18GHz is available and full RF/LO bandwidths may be provided in certain frequency bands.

Features

- Planar GaAs diodes
- Rugged compact design
- High reliability
- Low noise figure conversion loss
- Broad bandwidth
- Biased designs available

Applications

- Communications
- Radiometry
- Radar
- Laboratory Test Systems

<table>
<thead>
<tr>
<th>Specification</th>
<th>Unit</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Frequency Range</td>
<td>GHz</td>
<td>40</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Conversion Loss</td>
<td>dB</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Noise Figure DSB</td>
<td>dB</td>
<td></td>
<td></td>
<td>5.5</td>
</tr>
</tbody>
</table>

Notes:
1. The Conversion loss values are for IF bandwidth DC to 4 GHz. The BMC spec are fixed for LO frequency and a 4GHz IF bandwidth.
2. Mixers are operational over the specified full band (performance will vary over full band). Please consult factory with exact LO, RF and IF range for expected mixer performance.
3. RF/LO/IF VSWR typically <2.5:1.
4. BMC-XXB model uses bias to allow LO drive levels 0 to +3dBm.
5. LO level +13dBm as standard
6. Consult factory with LO, RF and IF range for performance specifications
7. IF bandwidths up to 40GHz are available with fixed LO, for certain models consult factory
8. Models covering frequencies beyond 220GHz are available, consult factory
9. FTL recommends the use of a precision PSU (FDB-F4) for best practice protection of Schottky diodes in all mixers.
Note:

The data contained in this document describes new products in the pre-production phase of development, and is for information only. Farran Technology reserves the right to change, without notice, the characteristic data and other specifications applied to this product. The product may be subject to Irish export restrictions.
Balanced Mixers
26.5 – 40 GHz – BMC-28

Description

Farran Technology offers a wide variety of balanced mixers. These are based on planar technology and GaAs Schottky barrier beam lead diodes. They feature low conversion loss, low noise figure, excellent noise suppression and LO-RF isolation. The LO drive requirement can be reduced by operating the mixers with bias. They are extremely rugged devises for small physical size and mass. Designs are chosen from a portfolio of mixer architectures depending on the customer’s detailed requirements. IF frequency coverage to at least 18GHz is available and full RF/LO bandwidths may be provided in certain frequency bands.

Features

• Planar GaAs diodes
• Rugged compact design
• High reliability
• Low noise figure conversion loss
• Broad bandwidth
• Biased designs available

Applications

• Communications
• Radiometry
• Radar
• Laboratory Test Systems

<table>
<thead>
<tr>
<th>Specification</th>
<th>Unit</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Frequency Range</td>
<td>GHz</td>
<td>26.5</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Conversion Loss</td>
<td>dB</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Noise Figure DSB</td>
<td>dB</td>
<td></td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. The Conversion loss values are for IF bandwidth DC to 4 GHz. The BMC spec are fixed for LO frequency and a 4GHz IF bandwidth.
2. Mixers are operational over the specified full band (performance will vary over full band). Please consult factory with exact LO, RF and IF range for expected mixer performance.
3. RF/LO/IF VSWR typically <2.5:1.
4. BMC-XXB model uses bias to allow LO drive levels 0 to +3dBm.
5. LO level +13dBm as standard
6. Consult factory with LO, RF and IF range for performance specifications
7. IF bandwidths up to 40GHz are available with fixed LO, for certain models consult factory
8. Models covering frequencies beyond 220GHz are available, consult factory
9. FTL recommends the use of a precision PSU (FDB-F4) for best practice protection of Schottky diodes in all mixers.
Note:

The data contained in this document describes new products in the pre-production phase of development, and is for information only. Farran Technology reserves the right to change, without notice, the characteristic data and other specifications applied to this product. The product may be subject to Irish export restrictions.